FEATURES

- ► Smallest Encapsulated 8W Converter
- ► Industrial Standard DIP-16 Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500VDC
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- ► Low No Load Power Consumption
- ► No Min. Load Requirement
- ► Under-voltage, Overload and Short Circuit Protection
- ► Shielded Metal Case with Insulated Baseplate
- ► Conducted EMI EN 55032 Class A Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

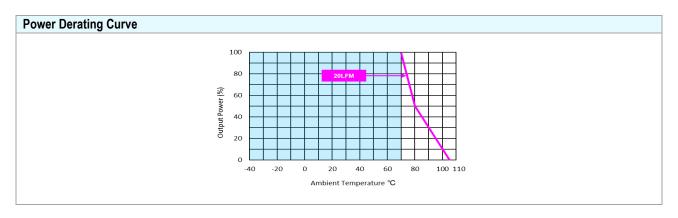
The MINMAX MDW08 series is a generation of high power density in DC-DC converter modules. The product offers a full 8W isolated DC-DC converter within an encapsulated DIP-16 package which occupies only 0.5 in 2 of PCB space. There are 21 models available for 12, 24, 48VDC with wide 2:1 input voltage range. Further features include under-voltage protection, overload protection, short circuit protection and no min. load requirement as well. An high efficiency allows operating temperatures range of -40°C to +80°C. These DC-DC converters offer a better solution for critical space applications like battery-powered equipment, instrumentation, distributed power architectures in communication, industrial electronics, energy facilities and others.

Model Selection Guid	e						
Model	Input	Output	Output	Input Current		Max. capacitive	Efficiency
Number	Voltage	Voltage	Current			Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MDWI08-24S033		3.3	2000	353	10	680	78
MDWI08-24S05		5	1600	407		680	82
MDWI08-24S12	04	12	665	391		330	85
MDWI08-24S15	24 (9 ~ 36)	15	535	393		330	85
MDWI08-24S24		24	335	390		150	86
MDWI08-24D12		±12	±335	394		150#	85
MDWI08-24D15		±15	±265	385		150#	86
MDWI08-48S033		3.3	2000	176		680	78
MDWI08-48S05		5	1600	206		680	81
MDWI08-48S12		12	665	196		330	85
MDWI08-48S15	48 (18 ~ 75)	15	535	197	8	330	85
MDWI08-48S24		24	335	195		150	86
MDWI08-48D12		±12	±335	195		150#	86
MDWI08-48D15		±15	±265	193		150#	86

For each output

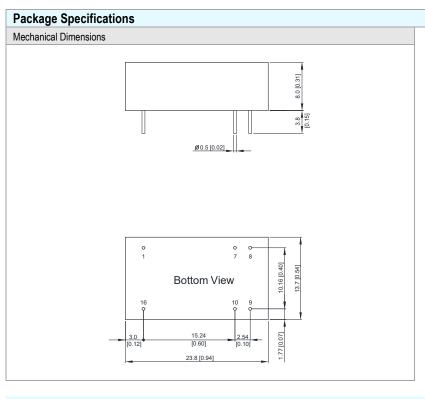
Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
Innut Curre Voltage (1 and may)	24V Input Models	-0.7		50		
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100		
Ctart I in Threehold Voltage	24V Input Models			9	VDC	
Start-Up Threshold Voltage	48V Input Models			18	VDC	
Lladas Valtasa Chutdaus	24V Input Models		8			
Under Voltage Shutdown	48V Input Models		16			
Input Filter	All Models		Internal	Pi Type		

E-mail:sales@minmax.com.tw Tel:886-6-2923150


Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.2	±0.8	%
Load Regulation	lo=0% to 100%		±0.5	±1.0	%
Minimum Load	No minimum Load Requirement				
Ripple & Noise	0-20 MHz Bandwidth			55	mV _{P-P}
Transient Recovery Time	050/ Lead Ober Ober es			500	μsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Hiccup		150		%
Short Circuit Protection	Hiccup Mode 0.3 Hz typ., Automatic Recovery				

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	60 Seconds	1500			VDC
	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			МΩ
I/O Isolation Capacitance	100kHz, 1V		500		pF
Switching Frequency			370		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,358,263			Hours
Safety Approvals	UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1(CB-report)				
	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)				

EMC Specifications						
Parameter	Standards & Level Performa			Performance		
EMI	Conduction	EN 55032	Without external components	Class A		
EIVII	Radiation	EN 33032	With external components	Class A		
	EN 55024					
	ESD	EN 61000-4-2 Air ± 8kV, Contact ± 6kV		A		
	Radiated immunity	EN 61000-4-3 20V/m		A		
EMS	Fast transient (5)	EN	61000-4-4 ±2kV	A		
	Surge (5)	EN 61000-4-5 ±1kV		A		
	Conducted immunity	EN 61000-4-6 10Vrms		Α		
	PFMF	EN 61000-4-8 100A/m, 1000A/m(1sec.)		A		


Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+80	°C		
Case Temperature		+105	°C		
Storage Temperature Range	-50	+125	°C		
Humidity (non condensing)		95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 To meet EN 61000-4-4 & EN 61000-4-5 an external capacitor across the input pins is required, please contact MINMAX.
- 6 Specifications are subject to change without notice.

Pin Connections					
Pin	Single Output	Dual Output			
1	-Vin -Vin				
7	NC	NC			
8	NC	Common			
9	+Vout	+Vout			
10	-Vout	-Vout			
16	+Vin	+Vin			

NC: No Connection

- ► All dimensions in mm (inches)
- Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

► Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

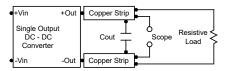
Physical Characteristics

Case Size : 23.8x13.7x8.0 mm (0.94x0.54x0.31 inches)

Case Material : Aluminium Alloy, Black Anodized Coating

Pin Material : Copper Alloy with Tin Plate Over Nickel Subplate

Weight : 6.1g


E-mail:sales@minmax.com.tw Tel:886-6-2923150

Test Setup

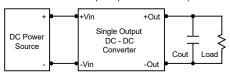
Peak-to-Peak Output Noise Measurement Test

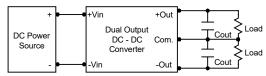
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Overload Protection

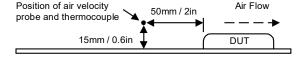
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $2.2\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.


Maximum Capacitive Load

The MDWI08 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C.

The derating curves are determined from measurements obtained in a test setup.

