

DC-DC CONVERTER 30W, Highest Power Density

# **FEATURES**

- Smallest Encapsulated 30W Converter
- Ultra-compact 1"×1" Package
- Ultra-wide 4:1 Input Voltage Range
- Fully Regulated Output Voltage
- Excellent Efficiency up to 90%
- ► I/O Isolation 1500 VDC
- Operating Ambient Temp. Range -40°C to +80°C
- No Min. Load Requirement
- Very low no load power consumption
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim
- Shielded Metal Case with Insulated Baseplate
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

# PRODUCT OVERVIEW





The MINMAX MJWI30 series is the latest range of a new generation of 30Watt isolated DC-DC power modules with ultra-wide input range of 9-36 / 18-75Vin and 14 models available for 3.3/5/12/15/24/±12/±15VDC tightly output voltage in a highest power density 75W/in<sup>3</sup> and ultra-compact size with dimensions of just 1.0"x1.0"x0.4" shielded and encapsulated package. Key performance featuring high efficiency up to 90%, operating ambient temp. range of -40°C to +80°C, no min. load requirement, very low no-load power consumption, remote on/off, output voltage trim, build-in fault condition protection include under-voltage, overload, over voltage and short circuit protection.

The MJWI30 series has been intensely qualified to safety approval UL/cUL/IEC/EN 62368-1 with CB report and CE marking which offer a solution for the applications where wide input voltage range, high efficiency for wide operating ambient temp. range, isolated power with fault condition protection, shield and encapsulated package and very board space limited / critical are required.

| Model Selection Guide |                |         |                |                   |          |            |                 |            |
|-----------------------|----------------|---------|----------------|-------------------|----------|------------|-----------------|------------|
| Model                 | Input          | Output  | Output Current | ent Input Current |          | Over       | Max. capacitive | Efficiency |
| Number                | Voltage        | Voltage |                |                   |          | Voltage    | Load            | (typ.)     |
|                       | (Range)        |         | Max.           | @Max. Load        | @No Load | Protection |                 | @Max. Load |
|                       | VDC            | VDC     | mA             | mA(typ.)          | mA(typ.) | VDC        | μF              | %          |
| MJWI30-24S033         |                | 3.3     | 7000           | 1106              | 10       | 3.9        | 10000           | 87         |
| MJWI30-24S05          |                | 5       | 6000           | 1420              | 10       | 6.2        | 7200            | 88         |
| MJWI30-24S12          |                | 12      | 2500           | 1420              | 10       | 15         | 1250            | 88         |
| MJWI30-24S15          | 24<br>(9 ~ 36) | 15      | 2000           | 1420              | 10       | 18         | 800             | 88         |
| MJWI30-24S24          |                | 24      | 1250           | 1420              | 10       | 30         | 330             | 88         |
| MJWI30-24D12          |                | ±12     | ±1250          | 1420              | 10       | ±15        | 680#            | 88         |
| MJWI30-24D15          |                | ±15     | ±1000          | 1404              | 10       | ±18        | 470#            | 88         |
| MJWI30-48S033         |                | 3.3     | 7000           | 553               | 8        | 3.9        | 10000           | 87         |
| MJWI30-48S05          |                | 5       | 6000           | 702               | 8        | 6.2        | 7200            | 88         |
| MJWI30-48S12          | 40             | 12      | 2500           | 702               | 8        | 15         | 1250            | 90         |
| MJWI30-48S15          | 48             | 15      | 2000           | 702               | 8        | 18         | 800             | 90         |
| MJWI30-48S24          | (10~75)        | 24      | 1250           | 694               | 8        | 30         | 330             | 90         |
| MJWI30-48D12          |                | ±12     | ±1250          | 694               | 8        | ±15        | 680#            | 90         |
| MJWI30-48D15          |                | ±15     | ±1000          | 694               | 8        | ±18        | 470#            | 90         |

### # For each output

Input Specifications Conditions / Model Unit Parameter Min. Max. Тур. 50 24V Input Models -07 ---Input Surge Voltage (100ms max.) 48V Input Models -0.7 ---100 VDC 24V Input Models -------9 Start-Up Threshold Voltage 48V Input Models ------18 Start Up Time (Power On) Nominal Vin and Constant Resistive Load 30 ------ms Input Filter All Models Internal Pi Type

E-mail:sales@minmax.com.tw Tel:886-6-2923150

2022/01/21 REV:7 Page 1 of 7

www.minmax.com.tw



# DC-DC CONVERTER 30W, Highest Power Density

# Remote On/Off Control

| Parameter                           | Conditions Min. Typ. Max.    |  |  |      |    |  |  |
|-------------------------------------|------------------------------|--|--|------|----|--|--|
| Converter On                        | 3.5V ~ 12V or Open Circuit   |  |  |      |    |  |  |
| Converter Off                       | 0V ~ 1.2V or Short Circuit   |  |  |      |    |  |  |
| Control Input Current (on)          | Vctrl = 5.0V 0               |  |  |      | mA |  |  |
| Control Input Current (off)         | Vctrl = 0V                   |  |  | -0.5 | mA |  |  |
| Control Common                      | Referenced to Negative Input |  |  |      |    |  |  |
| Standby Input Current Nominal Vin 2 |                              |  |  | mA   |    |  |  |

# Output Specifications

| Parameter                                            | Conditions /                    | Min.                                                      | Тур.           | Max.           | Unit    |                   |
|------------------------------------------------------|---------------------------------|-----------------------------------------------------------|----------------|----------------|---------|-------------------|
| Output Voltage Setting Accuracy                      |                                 |                                                           |                |                | ±1.0    | %Vnom.            |
| Output Voltage Balance                               | Dual Output, Balar              | nced Loads                                                |                |                | ±2.0    | %                 |
| Line Degulation                                      | Vin-Min to Max @Full Lood       | Single Output                                             |                |                | ±0.2    | %                 |
|                                                      | VIII-IVIIII. to Max. @Fuil Load | Dual Output                                               |                |                | ±0.5    | %                 |
| Lood Dogulation                                      | $l_{0}=00/t_{0}$ to $1000/$     | Single Output                                             |                |                | ±0.2    | %                 |
|                                                      | 10=0% to 100%                   | Dual Output                                               |                |                | ±1.0    | %                 |
| Cross Regulation (Dual) Asymmetrical Load 25% / 100% |                                 | 5% / 100% FL                                              |                |                | ±5.0    | %                 |
| Minimum Load                                         | No minimum Load Requirement     |                                                           |                |                |         |                   |
| Ripple & Noise                                       | 20 MHz Bandwidth                | Measured with a<br>0.1µF/50V MLCC<br>and a 47µF/50v MLCC. |                |                | 75      | mV <sub>P-P</sub> |
| Transient Recovery Time                              | 25% Load Step Change            |                                                           |                | 250            |         | µsec              |
| Transient Response Deviation                         |                                 |                                                           |                | ±3             | ±5      | %                 |
| Temperature Coefficient                              | nperature Coefficient           |                                                           |                |                | ±0.02   | %/°C              |
| Trim Up / Down Range                                 | % of Nominal Output Voltage     |                                                           |                |                | ±10     | %                 |
| Over Load Protection                                 | oad Protection Hiccup           |                                                           |                | 150            |         | %                 |
| Over Voltage Protection                              | Zener Diode                     |                                                           | 125            |                | % of Vo |                   |
| Short Circuit Protection                             | Cor                             | ntinuous, Automatic Reco                                  | very (Hiccup M | Node 0.6Hz typ | o.)     |                   |

# **General Specifications**

| General Opecifications                 |                                                             |           |      |      |       |  |  |
|----------------------------------------|-------------------------------------------------------------|-----------|------|------|-------|--|--|
| Parameter                              | Conditions                                                  | Min.      | Тур. | Max. | Unit  |  |  |
| 1/O loolation Valtage                  | 60 Seconds                                                  | 1500      |      |      | VDC   |  |  |
| I/O Isolation voltage                  | 1 Second                                                    | 1800      |      |      | VDC   |  |  |
| Isolation Voltage Input/Output to case | 60 Seconds                                                  | 1000      |      |      | VDC   |  |  |
| I/O Isolation Resistance               | 500 VDC                                                     | 1000      |      |      | MΩ    |  |  |
| I/O Isolation Capacitance              | 100kHz, 1V                                                  |           |      | 1500 | pF    |  |  |
|                                        | 3.3 Vo Models                                               |           | 175  |      | kHz   |  |  |
| Switching Frequency                    | 5 Vo Models                                                 |           | 248  |      | kHz   |  |  |
|                                        | 12 & 15 & 24 & Dual Vo Models                               |           | 285  |      | kHz   |  |  |
| MTBF(calculated)                       | MIL-HDBK-217F@25°C, Ground Benign                           | 1,310,710 |      |      | Hours |  |  |
| Safety Approvals                       | UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 |           |      |      |       |  |  |

# **EMC Specifications**

| Parameter |                    | Standards & Level                    |                              | Performance |  |  |  |
|-----------|--------------------|--------------------------------------|------------------------------|-------------|--|--|--|
| EMI       | Conduction         | EN 55022                             | With external companents     | Close A     |  |  |  |
| EIMI      | Radiation          | EN 55052                             | with external components     | Class A (5) |  |  |  |
|           | EN 55035           |                                      |                              |             |  |  |  |
|           | ESD                | Direct discharge                     | Indirect discharge HCP & VCP | ^           |  |  |  |
|           |                    | EN61000-4-2 Air ± 8kV, Contact ± 6kV | Contact ± 6kV                | A           |  |  |  |
| EMS       | Radiated immunity  | EN 61000-4-3 2                       | A                            |             |  |  |  |
| EIVIS     | Fast transient (6) | EN 61000-4-4 ±2kV                    |                              | A           |  |  |  |
|           | Surge (6)          | EN 61000-4-5                         | A                            |             |  |  |  |
|           | Conducted immunity | EN 61000-4-6 1                       | 0Vrms                        | A           |  |  |  |
|           | PFMF               | EN61000-4-8 100A/m Continu           | A                            |             |  |  |  |

E-mail:sales@minmax.com.tw Tel:886-6-2923150



DC-DC CONVERTER 30W, Highest Power Density

### **Environmental Specifications**

| Derometer                                         | Model                                                                                                  | Min    | Ma               | Linit         |          |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|------------------|---------------|----------|--|
| Parameter                                         |                                                                                                        | IVIII. | without Heatsink | with Heatsink | Unit     |  |
| Operating Ambient Temperature Range               | MJWI30-24S05, MJWI30-24S12, MJWI30-24S15<br>MJWI30-24S24, MJWI30-24D12, MJWI30-24D15<br>MJWI30-48S05   | 40     | 60               | 65            | °C       |  |
| (for Power Derating see relative Derating Curves) | MJWI30-24S033, MJWI30-48S033, MJWI30-48S12<br>MJWI30-48S15, MJWI30-48S24, MJWI30-48D12<br>MJWI30-48D15 | -40    | 65               | 70            |          |  |
| Case Temperature                                  |                                                                                                        |        | +105             |               | °C       |  |
| Storage Temperature Range                         |                                                                                                        | -55    | -55 +125         |               | °C       |  |
| Humidity (non condensing)                         |                                                                                                        |        | 95               |               | % rel. H |  |
| Lead Temperature (1.5mm from case for 10 sec.)    |                                                                                                        |        | 26               | 60            | °C       |  |



### Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The standard module meets EN 55032 Class A with external components. For further information, please contact MINMAX.
- 6 To meet EN 61000-4-4 & EN 61000-4-5 an external capacitor across the input pins is required, please contact MINMAX.
- 7 Specifications are subject to change without notice.
- 8 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

E-mail:sales@minmax.com.tw Tel:886-6-2923150

www.minmax.com.tw



# DC-DC CONVERTER 30W, Highest Power Density



### **Physical Characteristics**

| Case Size     | : | 5.4x25.4x10.2mm (1.0x1.0x0.4 inches)     |  |  |  |
|---------------|---|------------------------------------------|--|--|--|
| Case Material | : | Metal With Non-Conductive Baseplate      |  |  |  |
| Base Material | : | FR4 PCB (flammability to UL 94V-0 rated) |  |  |  |
| Pin Material  | : | Copper                                   |  |  |  |
| Weight        | : | 25g                                      |  |  |  |
|               |   |                                          |  |  |  |





DC-DC CONVERTER 30W, Highest Power Density

# **External Output Trimming**

Output can be externally trimmed by using the method shown below



Trim Up

Trim Down

|            | MJWI30    | -XXS033 | MJWI30    | -XXS05  | MJWI30    | -XXS12  | MJWI30-XXS15 |         | MJWI30    | MJWI30-XXS24 |  |
|------------|-----------|---------|-----------|---------|-----------|---------|--------------|---------|-----------|--------------|--|
| Trim Range | Trim down | Trim up | Trim down | Trim up | Trim down | Trim up | Trim down    | Trim up | Trim down | Trim up      |  |
| (%)        | (kΩ)      | (kΩ)    | (kΩ)      | (kΩ)    | (kΩ)      | (kΩ)    | (kΩ)         | (kΩ)    | (kΩ)      | (kΩ)         |  |
| 1          | 72.64     | 60.49   | 139.38    | 107.37  | 413.55    | 351.00  | 530.73       | 422.77  | 598.65    | 487.13       |  |
| 2          | 32.49     | 27.14   | 62.91     | 48.26   | 184.55    | 157.50  | 238.61       | 189.89  | 267.77    | 218.01       |  |
| 3          | 19.10     | 16.03   | 37.42     | 28.56   | 108.22    | 93.00   | 141.24       | 112.26  | 157.48    | 128.30       |  |
| 4          | 12.41     | 10.47   | 24.68     | 18.71   | 70.05     | 60.75   | 92.56        | 73.44   | 102.33    | 83.45        |  |
| 5          | 8.39      | 7.14    | 17.03     | 12.80   | 47.15     | 41.40   | 63.35        | 50.15   | 69.24     | 56.54        |  |
| 6          | 5.72      | 4.91    | 11.94     | 8.86    | 31.88     | 28.50   | 43.87        | 34.63   | 47.18     | 38.60        |  |
| 7          | 3.80      | 3.33    | 8.29      | 6.05    | 20.98     | 19.29   | 29.96        | 23.54   | 31.43     | 25.78        |  |
| 8          | 2.37      | 2.14    | 5.56      | 3.94    | 12.80     | 12.37   | 19.53        | 15.22   | 19.61     | 16.17        |  |
| 9          | 1.25      | 1.21    | 3.44      | 2.29    | 6.44      | 7.00    | 11.41        | 8.75    | 10.42     | 8.69         |  |
| 10         | 0.36      | 0.47    | 1.74      | 0.98    | 1.35      | 2.70    | 4.92         | 3.58    | 3.07      | 2.71         |  |



DC-DC CONVERTER 30W, Highest Power Density

| Order Code Table |                  |
|------------------|------------------|
| Standard         | With heatsink    |
| MJWI30-24S033    | MJWI30-24S033-HS |
| MJWI30-24S05     | MJWI30-24S05-HS  |
| MJWI30-24S12     | MJWI30-24S12-HS  |
| MJWI30-24S15     | MJWI30-24S15-HS  |
| MJWI30-24S24     | MJWI30-24S24-HS  |
| MJWI30-24D12     | MJWI30-24D12-HS  |
| MJWI30-24D15     | MJWI30-24D15-HS  |
| MJWI30-48S033    | MJWI30-48S033-HS |
| MJWI30-48S05     | MJWI30-48S05-HS  |
| MJWI30-48S12     | MJWI30-48S12-HS  |
| MJWI30-48S15     | MJWI30-48S15-HS  |
| MJWI30-48S24     | MJWI30-48S24-HS  |
| MJWI30-48D12     | MJWI30-48D12-HS  |
| MJWI30-48D15     | MJWI30-48D15-HS  |

| Order Code For Heatsink kit (including: Heatsink x1, Clamp x 2, Thermal Pad x1) |
|---------------------------------------------------------------------------------|
| HS-J001                                                                         |
| 21.5[0.85]Max.                                                                  |
|                                                                                 |

E-mail:sales@minmax.com.tw Tel:886-6-2923150



### DC-DC CONVERTER 30W, Highest Power Density

### **Test Setup**

### Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.



### Peak-to-Peak Output Noise Measurement Test

Use a 47µF and 0.1µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.





### **Technical Notes**

#### Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal.

The switch can be an open collector or equivalent. A logic low is 0V to 1V. A logic high is 2.5V to 50V. The maximum sink current at on/off terminal during a logic low is -500µA. The maximum allowable leakage current of the switch at on/off terminal (2.5 to 50V) is 500µA.

### **Overload Protection**

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

#### Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR <  $1.0\Omega$  at 100 kHz) capacitor of a  $6.8\mu$ F for the 24V and 48V devices.



### **Output Ripple Reduction**

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



### Maximum Capacitive Load

The MJWI30 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

### Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.



18, Sin Sin Road, An-Ping Industrial District, Tainan 702, Taiwan Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: <u>sales@minmax.com.tw</u> Minmax Technology Co., Ltd. 2022/01/21 REV:7 Page 7 of 7